

Home Search Collections Journals About Contact us My IOPscience

Energy transfer in europium and terbium compounds formed with $[Cr(OH)_6Mo_6O_{18}]^{3-}$ and $[Cr_{0.1}Al_{0.9}(OH)_6Mo_6O_{18}]^{3-}$ heteropolyanions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys.: Condens. Matter 14 8743 (http://iopscience.iop.org/0953-8984/14/37/310)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 18/05/2010 at 14:59

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 8743-8753

Energy transfer in europium and terbium compounds formed with $[Cr(OH)_6Mo_6O_{18}]^{3-}$ and $[Cr_{0.1}Al_{0.9}(OH)_6Mo_6O_{18}]^{3-}$ heteropolyanions

Min Yin^{1,2,4}, A B Yusov³, A M Fedosseev³ and J-C Krupa²

¹ Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China

² Institut de Physique Nucléaire, CNRS-IN2P3, 91406 Orsay Cedex, France

³ Institute of Physical Chemistry, 31 Leninsky prospekt, Moscow, 119991, Russia

E-mail: yinmin@ustc.edu.cn

Received 21 March 2002, in final form 23 July 2002 Published 5 September 2002 Online at stacks.iop.org/JPhysCM/14/8743

Abstract

The new compounds $Ln[M(OH)_6Mo_6O_{18}]\cdot 11H_2O$ (Ln = Tb, Eu and M = Al, Cr) were synthesized and their luminescence properties analysed and discussed. Results show that there is a very efficient energy transfer from Eu³⁺ (Tb³⁺) to Cr³⁺ ions in Eu[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O and Tb[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O. The transfer strongly quenches Eu³⁺ (Tb³⁺) luminescence and greatly shortens the lifetimes of the radiative levels. By using selective excitation at low temperature, the transfer mechanisms are investigated and models are presented. Based on the above model, a rate of ET $k_C = 1.33 \times 10^6 \text{ s}^{-1}$ from Tb³⁺ to Cr³⁺ ions in Tb[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O at 12 K is obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In previous papers, we have reported structural and luminescent properties of lanthanide compounds formed with heteropolyanions with Anderson's structure: $[TeMo_6O_{24}]^{6-}$ and $[IMo_6O_{24}]^{5-}$ [1, 2]. It seems interesting to expand this study to compounds with such structure to reveal possible trends in luminescence properties in relation with the lanthanide-ion coordination. With this goal, europium and terbium compounds formed with $[Cr(OH)_6Mo_6O_{18}]^{3-}$ and $[Al(OH)_6Mo_6O_{18}]^{3-}$ anionic groupings having a similar Anderson structure [3] were investigated. The results obtained show that compounds formed with $[Cr(OH)_6Mo_6O_{18}]^{3-}$ polyanions are interesting systems in which to study energy transfer (ET) between transition and lanthanide metals.

The ET process has now been being investigated for over half a century [4–6]. It occurs via exchange interaction or electric multipolar interaction, when the donor emission spectrum

0953-8984/02/378743+11\$30.00 © 2002 IOP Publishing Ltd Printed in the UK

⁴ Author to whom any correspondence should be addressed.

overlaps the acceptor absorption spectrum. One excellent example of ET between transition and lanthanide metals is provided by the system MnF_2 :Eu, where high efficiency of ET from Mn^{2+} to Eu³⁺ ions induces a bright Eu³⁺ luminescence [7, 8]. The mechanism of ET between d and f ions is also used to enhance the emission of Nd³⁺ ions in Y₃Al₅O₁₂:Nd, Cr and Gd₃Sc₂Ga₃O₁₂:Nd, Cr laser crystals [9, 10]. However, studies of ET between d and f ions usually focus on the process from d ions to f ions; few data can be found in the literature for the opposite process, which of course is also very important. In addition, for pure compounds (especially pure molecular compounds) of transition and lanthanide metals, reports on ET are very limited. The aim of this paper is to study the ET from lanthanide ions (Eu³⁺ and Tb³⁺) to the transition metal ion (Cr³⁺) and its dependence on concentration and sample temperature in compounds with heteropolyanions. To our best knowledge, it is the first report on the ET between d ions and f ions in this kind of system.

We present here an ET study involving europium and terbium compounds formed with $[Al(OH)_6Mo_6O_{18}]^{3-}$ and $[Cr(OH)_6Mo_6O_{18}]^{3-}$ heteropolyanions. In $Tb[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O$ and $Eu[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O$, an efficient ET to Cr^{3+} ions strongly quenches the luminescence of Eu^{3+} (Tb^{3+}) ions and greatly shortens the lifetimes of the radiative levels. The temperature dependence on the ET efficiency as well as that on the transfer mechanisms are investigated and analysed.

2. Experimental details

 $(NH_4)_3[Al(OH)_6Mo_6O_{18}]\cdot nH_2O$ and $(NH_4)_3[Cr(OH)_6Mo_6O_{18}]\cdot nH_2O$ compounds were synthesized as described earlier [11] and purified by recrystallization from aqueous solutions. Crystalline compounds of trivalent Eu and Tb formed with $[Al(OH)_6Mo_6O_{18}]^{3-}$ and $[Cr(OH)_6Mo_6O_{18}]^{3-}$ heteropolyanions were synthesized from $Ln(NO_3)_3$ and $(NH_4)_3[M(OH)_6Mo_6O_{18}]\cdot nH_2O$ (Ln = Eu, Tb; M = Al, Cr) mixed solutions. Compounds containing fractional amounts of Cr/Al and Eu have also been prepared for behaviour comparison.

The samarium compound formed with $(NH_4)_3[Al(OH)_6Mo_6O_{18}]\cdot nH_2O$ was first studied within the lanthanide series. According to single-crystal x-ray diffraction data, its stoichiometric composition is $Sm[Al(OH)_6Mo_6O_{18}]\cdot 11H_2O$. Identical XRD spectra recorded for europium and terbium compounds prepared for this study show that they are all isostructural and can be ascribed to the same composition: $Ln[M(OH)_6Mo_6O_{18}]\cdot 11H_2O$ (Ln = Eu, Tb; M = Al, Cr).

Samples were placed in a circulating liquid-helium optical cryostat (Oxford International) with a temperature-regulated gas system allowing the temperature to be varied between 10 and 300 K. Excitation spectra were recorded using laser radiations from coumarin 480 and rhodamine 610 dyes pumped by the third and the second harmonics of YAG:Nd³⁺ ($\lambda = 1.06 \mu$ m, pulse duration 10 ns, with a repetition rate of 30 Hz) respectively. The emission spectra were recorded with a Jobin-Yvon HR-1000 monochromator equipped with a Hamamatsu R374 photomultiplier. The output was analysed by a Stanford SR-510 lock-in amplifier and stored in computer memories. The luminescent decay profiles were recorded with a Lecroy 9350M oscilloscope (500 MHz) interfaced with a computer.

3. Results and discussion

3.1. $Tb[Al(OH)_6Mo_6O_{18}] \cdot 11H_2O$ compound

Under selective excitation to the ${}^{5}D_{4}$ level of Tb³⁺ at 486.5 nm, Tb[Al(OH)₆Mo₆O₁₈]·11H₂O shows an intense green emission at 12 K (figure 1(a)). The emission spectrum consists of several

Figure 1. (a) The emission spectrum of Tb[Al(OH)₆Mo₆O₁₈]·11H₂O under selective excitation to the ⁵D₄ level of Tb³⁺ ions at 12 K, $\lambda_{ex} = 486.5$ nm. The inset shows the ⁵D₄ \rightarrow ⁷F₀₋₂ emissions. (b) The decay curve for ⁵D₄ \rightarrow ⁷F₅ emission under 486.5 nm excitation at 12 K, $\lambda_{em} = 542.4$ nm (dotted curve). The lifetime value is obtained by fitting the decay with a single-exponential function.

groups of lines attributed to ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 0-5) transitions. Compared to the strongest ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ emission, the intensities of the other transitions are much weaker, especially for ${}^{5}D_{4} \rightarrow {}^{7}F_{2,1,0}$ (a different scale is used for inset of figure 1(a)). Figure 1 shows three peaks for the transition ${}^{5}D_{4} \rightarrow {}^{7}F_{1}$, which is consistent with the local C₁ symmetry of the Tb³⁺-ion environment in the crystal.

In polytungstate compounds, terbium luminescence was reported to be quenched via ET from Tb³⁺ excited levels to the W⁶⁺ grouping [12]. The W⁶⁺ ions develop a strong short-range potential to attract electrons from their oxygen environment for reduction. The electron transfer populates the charge transfer state, W⁶⁺ \rightarrow W⁵⁺. The same factor leads to the quenching of Tb³⁺ luminescence in iso-polymolybdate solutions, which was studied in [13]. However, when aluminium is added to the composition, the compound Tb[Al(OH)₆Mo₆O₁₈]·11H₂O shows a quite strong Tb³⁺ emission (figure 1(a)). A possible reason is that the position of the charge transfer state Mo⁶⁺–Mo⁵⁺ in this system is located much higher in energy than the emitting ⁵D₄ level in Tb³⁺ ions measured at 20555 cm⁻¹ (486.5 nm), so the energy cannot be transferred non-radiatively from the Tb³⁺ excited level to the Mo⁶⁺ charge transfer state. Accordingly, the fluorescence decay of the ⁵D₄ \rightarrow ⁷F₅ transition in Tb[Al(OH)₆Mo₆O₁₈]·11H₂O excited resonantly shows a pure exponential feature both at 12 K and at 300 K. Linear fitting of the decay profile (the solid curve in figure 1(b)) provides a lifetime equal to 0.392 ms for the ⁵D₄ level at 12 K. At 300 K the value becomes 0.37 ms due to the increase in efficiency of the non-radiative transition.

Figure 2. (a) The excitation spectrum of Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O at 12 K, $\lambda_{em} = 542.58$ nm. (b) The emission spectrum of Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O under selective excitation to the ⁵D₄ level of Tb³⁺ ions at 12 K, $\lambda_{ex} = 485.6$ nm. The left inset shows the decay curve for ⁵D₄ \rightarrow ⁷F₅ emission with 485.6 nm excitation at 12 K, $\lambda_{em} = 542.58$ nm. The lifetime value is obtained by fitting the decay with a single-exponential function. The right inset is the decay profile of the R line (689.06 nm) of Cr³⁺ under selective excitation to the ⁵D₄ level of Tb³⁺ ions at 12 K, $\lambda_{ex} = 485.6$ nm.

3.2. Energy transfer in $Tb[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$ compound

For the compound formed with chromium, Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O, the excitation spectrum at 12 K of ⁵D₄ \rightarrow ⁷F₅(Tb³⁺) emission at 542.58 nm is shown in figure 2(a) in the energy region of ⁷F₆ \rightarrow ⁵D₄. The spectrum is composed of five peaks with the strongest one at 485.6 nm, as well as some smaller peaks detected as shoulders. Unlike Tb[Al(OH)₆Mo₆O₁₈]·11H₂O, the chromium compound Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O shows only a very weak luminescence under selective excitation at $\lambda_{ex} = 485.6$ nm at 12 K (figure 2(b)) and even the strongest transition, ⁵D₄ \rightarrow ⁷F₅ in Tb³⁺ ions, provides here only weak peaks. In addition, the lifetime of the ⁵D₄ level is shortened to a value of 0.75 μ s, less than 2/1000 of that observed in Tb[Al(OH)₆Mo₆O₁₈]·11H₂O. Simultaneously, the Cr³⁺ luminescence appears in the region of 700 nm under selective excitation to the ⁵D₄ level in Tb³⁺ ions, and its decay profile shows clearly a rise time corresponding to the lifetime of ⁵D₄ level in Tb³⁺ ions evidence that a rather effective ET from Tb³⁺ to Cr³⁺ takes place in Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O, resulting in a drastic Tb³⁺ luminescence quenching.

Figure 3. Models of ET in $Eu[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$ and $Tb[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$. Thick lines represent transitions induced by the laser light absorption, thin lines represent fluorescence transitions and the dashed lines represent cross-relaxation mechanisms.

In the compound investigated, $Tb[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$, Cr^{3+} ions are in an octahedral field induced by the oxygen atoms in the neighbouring arrangement. According to the spectral and energy level structure for Cr^{3+} and Tb^{3+} ions, ET in the $Tb[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$ system occurs via the following cross-relaxation process (figure 3):

$${}^{5}\mathrm{D}_{4}(\mathrm{Tb}^{3+}) + {}^{4}\mathrm{A}_{2g}(\mathrm{Cr}^{3+}) \rightarrow {}^{7}\mathrm{F}_{J}(\mathrm{Tb}^{3+}) + {}^{4}\mathrm{T}_{2g}(\mathrm{Cr}^{3+}).$$

Since the transitions ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ in Tb³⁺ and ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ in Cr³⁺ are both forced electric dipole allowed and the spectral overlap is nearly optimal, this ET is very efficient. Using the lifetime values of the ${}^{5}D_{4}$ level in Tb³⁺ ions in Tb[Al(OH)₆Mo₆O₁₈]·11H₂O (0.392 ms) and in Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O (0.75 μ s) at 12 K, one can calculate the ET rate k_{C} from the equation $k = k_{C} + k'$ (figure 3). Here $k = 1/0.75 \ \mu$ s⁻¹ is the decay rate of the ${}^{5}D_{4}$ level in Tb³⁺ ions in Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O while $k' = 1/0.392 \text{ ms}^{-1}$, in Tb[Al(OH)₆Mo₆O₁₈]·11H₂O. The k_{C} -value obtained equals 1.33 × 10⁶ s⁻¹, really a very large transfer rate.

The emission spectrum presented in figure 2(b) is typical for Cr^{3+} ions in octahedral field symmetry. The intense sharp peak at 689.06 nm is the well-known R line originating in the ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition; the weaker lines on the lower-energy side are the sidebands of the R line. Due to the low sample temperature (12 K), the population of the higher ${}^{2}E_{g}$ sub-level cannot be achieved and only one R line appears in the spectrum. From the spectrum, we can also learn that ${}^{2}E_{g}$ is the lowest excited-state level of Cr^{3+} ions in Tb[Cr(OH)_6Mo_6O_{18}]\cdot11H_2O.

Figure 4. (a) The emission spectrum of Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O under 355 nm excitation at 12 K. (b) The decay curve for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission under 355 nm excitation at 12 K, $\lambda_{em} = 615.26$ nm (dotted line). The lifetime value is obtained by fitting the decay with a single-exponential function.

3.3. Energy transfer in $Eu[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$ compound

Similar results are obtained for the europium compound $Eu[Cr(OH)_6Mo_6O_{18}]$.11H₂O. Powder x-ray analysis showed that it is isostructural with Sm[Al(OH)₆Mo₆O₁₈]·11H₂O, where Sm^{3+} has C_1 symmetry. Figure 4(a) presents the emission spectrum of the mixed chromium/aluminium compound Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O under 355 nm excitation at 12 K. As expected, the spectrum is composed of emission lines originating from both Eu³⁺ and Cr³⁺ ions. The emission of Cr³⁺ ions is centred around 700 nm and overlaps the ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transition lines in Eu³⁺ ions. The other emission lines of Eu³⁺ are well separated from that of Cr^{3+} ions, so the assignments given in the figure can be easily achieved. Apart from the Eu³⁺ intense emission originating from the ${}^{5}D_{0}$ level, weaker ${}^{5}D_{1} \rightarrow {}^{7}F_{3}$ emissions (584.3 nm) are also recorded. The peak numbers for ${}^{5}D_{0} \rightarrow {}^{7}F_{0-2}$ transitions are 1, 3 and 5 (four lines and a shoulder) respectively, confirming again only one site of C_1 symmetry for Eu^{3+} ions in $Eu[Cr_{0.1}Al_{0.9}(OH)_6Mo_6O_{18}] \cdot 11H_2O$. Similarly to the case for the Eu^{3+} ion in X_{1-} $Y_2SiO_5:Eu^{3+}$ [14] where it has the same C_1 symmetry, the ${}^5D_0 \rightarrow {}^7F_3$ emission is very weak. From the peak positions for ${}^{5}D_{0} \rightarrow {}^{7}F_{0-2}$, one can easily deduce the Stark levels of ${}^{7}F_{0-2}$ and ${}^{5}D_{0}$, as presented in table 1. It should also be pointed out that two other mixed phases, probably resulting from the distortion of Eu³⁺ surroundings, were detected but at a very weak level (which can only be recorded under selective excitation), which is difficult to avoid when powder samples are considered.

$^{2S+1}L_J$ level	Energy (cm ⁻¹)
⁷ F ₀	0
$^{7}F_{1}$	310
	377
	440
$^{7}F_{2}$	887
	997
	1018
	1 0 3 1
	1 1 5 1
${}^{5}D_{0}$	17 250

Table 1. Some of the experimental energy levels of the Eu^{3+} ion in $Eu[Cr_{0.1}Al_{0.9}$ (OH)₆Mo₆O₁₈]·11H₂O.

The fluorescence decay profile of the 615.2 nm emission (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) of Eu³⁺ ions in the mixed compound Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O at 12 K shows a pure exponential decay under 355 nm excitation with a lifetime of 107 μ s for the ${}^{5}D_{0}$ radiative level (figure 4(b)). This value is much smaller than the one measured for the pure aluminium compound Eu[Al(OH)₆Mo₆O₁₈]·11H₂O (234 μ s), showing that an ET should occur between Cr³⁺ and Eu³⁺ ions.

For the mixed compound Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O, it is interesting to compare the two emission spectra of Eu³⁺ ions obtained respectively for non-selective excitation at 355 nm and selective excitation to the ⁵D₀ (579.72 nm) level of Eu³⁺ ions (figure 5(a) where the spectra are normalized for the ⁵D₀ \rightarrow ⁷F₂ transition of Eu³⁺). Figure 5(a) shows that selective excitation in the ⁵D₀(Eu³⁺) level induces more Cr³⁺ emission. This can be explained as follows: the direct excitation of Cr³⁺ by the 579.72 nm radiation, together with the ET from Eu³⁺ to Cr³⁺, results in an enhanced relative emission intensity of Cr³⁺ as compared with 355 nm excitation.

The concentration dependence of the emission spectra of $Eu[Cr_xAl_{1-x}(OH)_6Mo_6O_{18}]\cdot 11$ H₂O under 355 nm excitation at 12 K confirms again the ET from Eu³⁺ to Cr³⁺. The result is shown in figure 5(b). For comparison, the two spectra were normalized for the R line of Cr³⁺. With increasing Cr³⁺ concentration and accordingly increasing interaction between Eu³⁺ and Cr³⁺, more energy was transferred from the Eu³⁺ to the Cr³⁺ ions, leading to a relatively weak Eu³⁺ emission in Eu[Cr_{0.5}Al_{0.5}(OH)₆Mo₆O₁₈]·11H₂O compared to that in Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O.

For stoichiometric Eu and Cr compounds Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O, the emission spectra change substantially because of the more active Eu \rightarrow Cr ET (figure 6). At 12 K and under selective excitation to the ⁵D₀ level of Eu³⁺ ions at 579.72 nm, the hypersensitive transition ⁵D₀ \rightarrow ⁷F₂ of Eu³⁺ ions produces several weak peaks with the strongest one located at 615.2 nm. The fluorescence decay profile for the emission at 615.2 nm is also single exponential and provides a value of 1.3 μ s for the lifetime of the ⁵D₀ level (see the inset of figure 6). This value is much smaller than the value of 107 μ s measured for the mixed compound Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O and 234 μ s measured for Eu[Al(OH)₆Mo₆O₁₈]·11H₂O. The acceptor concentration is responsible of this variation in the ET efficiency: higher Cr³⁺ concentration results in weaker Eu³⁺ luminescence and shorter lifetime. As expected, the temperature also affects the ET efficiency: the Eu³⁺ luminescence becomes weak when temperature increases. In figure 6, at 98 K, we can still notice a residue of Eu³⁺ emission (denoted by an arrow), but at room temperature (RT), it is hard to distinguish it.

Figure 5. (a) Emission spectra of $Eu[Cr_{0.1}Al_{0.9}(OH)_6Mo_6O_{18}]\cdot11H_2O$ at 12 K under 355 nm excitation and selective excitation to the 5D_0 level of Eu^{3+} ions at 17 250 cm⁻¹ (579.72 nm). (b) The concentration dependence of the emission spectra of $Eu[Cr_xAl_{1-x}(OH)_6Mo_6O_{18}]\cdot11H_2O$ under 355 nm excitation at 12 K.

The Cr^{3+} ions show intense luminescence in Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O, and similarly to the Eu³⁺-ion behaviour, the emission spectrum changes markedly with temperature. At 12 K, the emission spectrum originates from the lowest excited-state level ${}^{2}E_{g}$ and consists of R lines and their sidebands with the R1 line dominant. When the temperature is increased up to 98 K, the higher sub-level of ${}^{2}E_{g}$ is more populated, leading to a more intense R2 line. At RT, the spectrum changes drastically: the R1 and R2 lines have comparable intensity and a new strong broad emission appears in the region of the R lines. This new broad band is attributed to the transition ${}^{4}T_{2g} \rightarrow {}^{4}A_{2g}$. From the Tanabe–Sugano diagram for the d³ configuration [15], we know that the ${}^{4}T_{2g}$ energy level position depends strongly on the crystal field intensity: for a low crystal field interaction, the ⁴T_{2g} level is the lowest excited state, while at higher crystal field, the lowest excited state is assigned as ${}^{2}E_{g}$. In section 3.1, we pointed out that in $Tb[Cr(OH)_6Mo_6O_{18}]$ ·11H₂O, the lowest excited state is 2E_g , and only the emission from the ${}^{2}E_{g}$ level is detected at low temperature. However, at RT, figure 6 tells us that ${}^{4}T_{2g}$ is thermally populated and emission originates from there. Since according to the spin selection rule, the ${}^{4}T_{2g} \rightarrow {}^{4}A_{2g}$ transition probability is larger than that of the ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition, one can understand that the ${}^{4}T_{2g}$ emission will dominate at high temperature.

Figure 7(a) provides direct evidence of the ET from Eu^{3+} to Cr^{3+} ions in $Eu[Cr(OH)_6Mo_6O_{18}]\cdot 11H_2O$. Monitoring the Cr^{3+} emission at 689.33 nm, one finds a narrow excitation peak at 464.8 nm that corresponds to the $^7F_0 \rightarrow {}^5D_2$ absorption transition in the Eu^{3+}

Figure 6. Emission spectra of Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O under selective excitation to the ⁵D₀ level of Eu³⁺ ions at 12, 98 K and RT, $\lambda_{ex} = 579.72$ nm. The inset shows the decay curve for ⁵D₀ \rightarrow ⁷F₂ emission under 579.72 nm excitation at 12 K, $\lambda_{em} = 615.2$ nm. The lifetime value is obtained by fitting the decay with a single-exponential function.

ion. This means that exciting Eu^{3+} ions can produce the emission of Cr^{3+} . If the ${}^{5}D_{2}$ level of Eu^{3+} ions at 21 515 cm⁻¹ (464.8 nm) is selectively excited in $Eu[Cr(OH)_{6}Mo_{6}O_{18}] \cdot 11H_{2}O$ at 12 K, a quite different spectrum from that of $Eu[Cr_{0.1}Al_{0.9}(OH)_{6}Mo_{6}O_{18}] \cdot 11H_{2}O$ (figure 4(a)) is obtained (figure 7(b)). The differences reside mainly in two aspects:

- (i) Cr^{3+} emission is dominant in the former compound;
- (ii) the emissions originating from ${}^{5}D_{1}$ and ${}^{5}D_{0}$ levels of Eu³⁺ ions have comparable intensity in Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O (see the inset of figure 7(b)), while in the mixed Cr, Al compound Eu[Cr_{0.1}Al_{0.9}(OH)₆Mo₆O₁₈]·11H₂O, the ${}^{5}D_{1}$ emission is very weak compared to that of ${}^{5}D_{0}$.

From these experimental features, we can draw the conclusion that the ET occurs mainly from the ${}^{5}D_{0}$ level of Eu³⁺ ions to Cr³⁺ ions in Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O. After resonant excitation to the ${}^{5}D_{2}$ level of Eu³⁺, the ions relax non-radiatively to the lower ${}^{5}D_{1}$ level and from there, only a small proportion of the ions relax radiatively, while the majority populate the ${}^{5}D_{0}$ level non-radiatively. Then according to the ET depicted in figure 3, the nearby Cr³⁺ ions can be excited through the following cross-relaxation process leading to Cr³⁺ emission:

$${}^{5}D_{0}(Eu^{3+}) + {}^{4}A_{2g}(Cr^{3+}) \rightarrow {}^{7}F_{J}(Eu^{3+}) + {}^{4}T_{2g}(Cr^{3+}).$$

Figure 7. (a) The excitation spectrum of Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O at 12 K, $\lambda_{em} = 689.33$ nm. (b) The emission spectrum of Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O under selective excitation to the ⁵D₂ level of Eu³⁺ ions at 12 K, $\lambda_{ex} = 464.8$ nm. The inset shows the ⁵D₁ \rightarrow ⁷F₁₋₃ and ⁵D₀ \rightarrow ⁷F₂ emissions.

4. Conclusions

New europium and terbium compounds formed with $[Al(OH)_6Mo_6O_{18}]^{3-}$ and $[Cr(OH)_6Mo_6O_{18}]^{3-}$ polyanions have been synthesized and a systematic spectroscopic study in the visible region has been performed. The luminescence of Tb^{3+} in the compound formed with $[Al(OH)_6Mo_6O_{18}]^{3-}$ is surprisingly intense, in spite of the strong quenching effect of ET to the $Mo^{6+}-Mo^{5+}$ charge transfer state that one could expect from the literature. In $Tb[Cr(OH)_6Mo_6O_{18}]\cdot11H_2O$ and $Eu[Cr(OH)_6Mo_6O_{18}]\cdot11H_2O$, there is a very efficient ET from Eu^{3+} (Tb^{3+}) to Cr^{3+} ions that strongly quenches their luminescence and greatly shortens the radiative level lifetime. The transfer mechanisms involve the following cross-relaxations:

$${}^{5}D_{4}(Tb^{3+}) + {}^{4}A_{2g}(Cr^{3+}) \rightarrow {}^{7}F_{J}(Tb^{3+}) + {}^{4}T_{2g}(Cr^{3+})$$

in $Tb[Cr(OH)_6Mo_6O_{18}] \cdot 11H_2O$ and

$${}^{5}D_{0}(Eu^{3+}) + {}^{4}A_{2g}(Cr^{3+}) \rightarrow {}^{7}F_{J}(Eu^{3+}) + {}^{4}T_{2g}(Cr^{3+})$$

in Eu[Cr(OH)₆Mo₆O₁₈]·11H₂O respectively. Based on the above model, a rate of ET of $k_C = 1.33 \times 10^6 \text{ s}^{-1}$ from Tb³⁺ to Cr³⁺ ions in Tb[Cr(OH)₆Mo₆O₁₈]·11H₂O at 12 K can be obtained.

Acknowledgment

This work was supported by the Department of Energy, USA (Grant No DE-FG-07-98ER-14940), and by the Foundation of the Ministry of Education of China for the Elite Training

Project of the Century. One of authors (M Yin) acknowledges the financial support of CNRS the K C Wong fellowship.

References

- [1] Grigoriev M S, Struchkov Yu T, Fedosseev A M, Yusov A B and Yanovskiy A I 1992 Zh. Neorg. Khim. 37 2507
- [2] Fedosseev A M, Grigoriev M S, Budantseva N A, Shirokova I B, Antic-Fidancev E and Krupa J-C 2000 J. Lumin. 87–89 1065
- [3] Pope M T 1983 Heteropoly and Isopoly Oxometelates (New York: Springer) p 22
- [4] Dexter D L 1953 J. Chem. Phys. 21 836
- [5] Inokuti M and Hirayama F 1965 J. Chem. Phys. 43 1978
- [6] DiBartolo B 1984 Energy Transfer Processes in Condensed Matter: Energy Transfer Among Ions in Solids ed B DiBartolo (New York: Plenum)
- [7] Hegarty J and Imbusch G F 1977 Coll. Int. CNRS 255 199
- [8] Wilson B A, Yen M W, Hegarty J and Imbusch G F 1979 Phys. Rev. B 19 4238
- [9] Ostroumov V G, Prokhorov A M and Scherbakov I A 1989 OSA Proc. (Tunable Solid State Lasers) 5 124
- [10] Scherbakov I A 1988 IEEE J. Quantum Electron. 24 979
- [11] Baker L C W, Foster G, Tan W, Schkolnik F and McCutcheon T P 1955 J. Am. Chem. Soc. 77 2136
- [12] Blasse G, Dirksen G J and Zonnevijlle F 1981 Chem. Phys. Lett. 83 449
- [13] Yusov A B and Fedosseev A M 1987 Zh. Prikl. Spektrosk. 47 40
- [14] Yin M, Duan C, Zhang W, Lou L, Xia S and Krupa J-C 1999 J. Appl. Phys. 86 3751
- [15] Tanabe Y and Sugano S 1954 J. Phys. Soc. Japan 9 766